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Abstract. Recently, the Birkhoff-Gustavson normal form ( BGNF) approach has been used 
in both classical and semiclassical calculations. In this paper, we consider the limitations 
associated with this approach. At the classical level, we emphasise the need to properly 
take into account the divergence properties of the BGNF series. By reviewing an earlier 
work we demonstrate that this divergence problem may, in some cases, be resolved. 
However, after considering several standard quantisation rules, we find that i t  is not possible 
to obtain the correct quantisation of a system via the BGNF. As a result, we maintain that 
care should be used when working with the BGNF. 

1. Introduction 

The classical Birkhoff -Gustavson normal form ( BGNF)  (Birkhoff 1927, Gustavson 1966) 
and its semiclassical quantisation have received considerable attention in recent years 
(Churchill et a1 1978, JaffC and Reinhardt 1982, Robnik 1984, Robnik and Schriifer 
1985, Ali 1985). The following features of the BGNF approach (for classical and 
semiclassical descriptions of dynamical systems) make it quite appealing: (i) the BGNF 

series can be obtained by the elegant Lie transformation method that is very general 
in nature, ( i i )  the BGNF series is the classical analogue of the quantum Rayleigh- 
Schrodinger ( RS) perturbation series and (iii) the BGNF approach provides approximate 
classical constants of motion and semiclassical results in some cases where such results 
may be difficult to obtain otherwise. In spite of these appealing features, the B G N F  

approach has severe limitations that have not been properly emphasised in earlier 
work. Our purpose here is to illustrate some of the shortcomings of the BGNF approach. 

The two primary reasons for the limited range of application of the BGNF approach 
are (i) the common divergence of and (ii) the difficulty in the quantisation of the BGNF 

series. For a given perturbed system, the BGNF series necessarily diverges if the system 
is non-integrable and may diverge even if the system is integrable. Hence, one often 
finds that the series is divergent. In addition, while semiclassical results may approach 
the correct eigenvalues of the nth quantum state as n becomes very large, there is no 
method currently available for obtaining the correct quantum description from the 
BGNF for all n. This is due to the fact that the question of the quantisation of a classical 
Hamiltonian system containing the canonical variables q and p in the form qapP, with 
a, p 2 2, is still open. We illustrate these limitations with the help of a model system. 
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2. The BCNF of an anharmonic oscillator 

In a previous paper (Ali et a1 1986, hereafter referred to as I )  we studied the B G N F  

series for the quartic anharmonic oscillator H = ;( p 2 +  x2 + gx')). The B G N F  K of H 
was obtained by canonically transforming the variables (x, p )  to (6 ,  7). This transforma- 
tion was achieved by employing the method of Lie transformations, by means of which 
we generated 50 terms for K = UK, .  The lower order terms of this alternating series 
were found to be 

17 2 375 3 10689 4 87549 5 3132399 6 238225977 7 u = l + ; y - E y  + m y  1024.v 2048y 1 6 3 8 4 y  262144 y ' '  

where 

the harmonic oscillator action. We find it convenient to perform the canonical transfor- 
mation 

Q = ~ ' ' ~ ( 5  - i 7 )  P = 2-"2(-i5+ q )  (2)  

so that the transformed Hamiltonian K becomes a power series in y = igQP. We 
recently discovered that the first three terms in our B G N F  series were given in an earlier 
paper (Carhart 1971). From the few terms with which he worked, Carhart was not 
able to deduce the convergence properties of the B G N F  series-a situation that is more 
common than not. 

The rapid growth of the coefficients in equation (1) indicates that the series for K 
may not converge for a1l.y. In fact, in a study of this classical BGNF (I) ,  we found 
that the series has a small radius of convergence (y ,=0 .116  1 6 . .  .). Thus, for this 
integrable system, the BGNF series has the limited range of application O s y <  
0.1 16 16 . . . . The fact that the BGNF series diverges for y 2 yo  does not refute the global 
integrability of H. The situation is much worse when the system does not support the 
required number of constants of motion, i.e. when the system is non-integrable, as the 
series for K does not converge to H in this case. The reason for this is that K is 
integrable by construction while H is non-integrable by assumption, and hence H # K .  
For integrable situations, where the radius of convergence is non-zero (Robnik 1984), 
the usefulness of the BGNF may be increased by appropriately summing the series. 
For our model anharmonic oscillator, we have summed the divergent BGNF series 
(equation ( 1 ) )  by the method of Pad6 approximants (Baker 1975), chosen in such a 
manner as to yield the known asymptotic limits. The procedure to determine these 
Pad6 approximants is (see I )  

( i )  define the cube of the series U to be 2, i.e. Z = U 3 ;  
(ii) determine the [ m  + 1 ,  m] Pad6 approximant of 2, P [ m  + 1, m ] ,  and 
(iii) then K = K,{P[m + 1, m ~ ] } " ~ .  
Since the rate of convergence of these approximants is rather slow as m increases, 

we developed an 'asymptotic' series for our function by first identifying the BGNF with 
a generalised hypergeometric function (Codaccioni and Caboz 1984), for which the 
analytical continuation is well known, and then finding an appropriate Pad6 
approximant of the analytically continued hypergeometric function. The leading terms 
in this analytically continued series are 

v = 1 -$cz + ( $ c 2  - &)2 - &c3z3 - (&c4 - &z4+  &=$z5+ (&c6+ h 4 C 2 ) Z 6  . . ( 3 )  
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where 

3r($)'  
T 2 2 3 / ? '  

c = -- 3r($ 
gz 7T 2- 

a=- 
1 / 2  5/4  

1 
K = , V  z = ( 

The procedure to determine the asymptotic Pad6 approximants is (again see I )  
(i) determine the [ j ,  j ]  Pad6 approximants, P,[j, j], of equation (3), and  
( i i )  then K = (1/gz2)P,[j, j]. 
By representing our function by the two Pad6 approximants P[14,13] and 

P,[14, 141, we were able to obtain excellent values for the period of the anharmonic 
oscillator. With the divergence problem for our example thus resolved, we now turn 
our attention to the problem of obtaining quantum results from the BGNF. For a 
discussion of the divergence problem in a multidimensional case, see Bogomol'nyi 
(1983). 

3. The quantisation of the BGNF 

In the previous section we have seen that the range of correct classical results in the 
BGNF approach is limited by the radius of convergence of the BGNF series and that 
this limitation may be removed by summing the series, providing it is summable. 
However, the solution of this classical problem does not resolve the additional and 
independent problem of obtaining the correct quantum description of a system from 
the BGNF. Robnik (1984) has pointed out that, because the B G N F  series (whether 
convergent or divergent) contains terms of the form q a p p  with a,  p 2 2 ,  there is no 
unique solution to the quantisation problem. In this section we illustrate the limitations 
of several practical alternatives to exactly quantising the BGNF. 

The quantisation rule p + p  = -ih d / d x  and  x + x ,  yields the unique operator 

H = ~ [ - h * ( d ' / d ~ ' ) + x ~ + g ~ ~ ]  (4) 

for the classical anharmonic oscillator Hamiltonian H(x ,  p ) ,  where --CC, x < CC and 
- a s p  s oc. We accept, as is generally done, H ( x ,  p )  as the correct quantum operator 
associated with H(x ,  p ) ,  i.e. we assume that H provides the correct energy spectrum. 
The eigenvalues of H can be accurately calculated by such methods as matrix diagonali- 
sation, W K B J  calculations and  the summation of the RS perturbation series. The problem 
with the quantisation of the B G N F  is the following. At present, there does not exist 
any method by which the correct energy spectrum of H may be obtained from the 
BGNF series or its summation. This drawback of the BGNF approach is a direct 
consequence of the fact that K contains terms of the form Q"PP with a, p 2 2 .  The 
question of how to obtain the correct quantum operator corresponding to a classical 
Hamiltonian containing such terms is still open. In  the remainder of this section we 
shall illustrate that this is the case by demonstrating, for our model system, the 
limitations of several approaches to the problem. We restrict our discussion to these 
commonly used approaches as others, such as geometric quantisation (Simms 1977), 
are not yet in final form. 

3.1. Semiclassical (torus) quantisation 

One method that may be used to obtain quantum results is to determine a semiclassical 
expansion in h around the BGNF Hamiltonian. Since K ,  the B C N F  Hamiltonian for 
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our (one-dimensional) model system, is a function of the action K O ,  the first-order 
semiclassical or torus quantisation (Percival 1977, Jaff6 and Reinhardt 1982) of the 
system is simple; it is obtained by replacing K O  by ( n  + f ) h ,  as we have set w = 1. (For 
multidimensional systems, the B G N F  is a function of the action variables only if the 
system is non-resonant. Nevertheless, torus quantisation is straightforward even in the 
multidimensional case.) Since either the series or the Pad6 approximants can be 
quantised by the torus quantisation method, the classical solution of the divergence 
problem can be used here. However, while the torus quantisation of our Pad6 
approximants does approach the correct eigenvalues as n +CO for finite g, it yields 
poor results for the combination of small n and appreciable g (see table IV in I) .  In 
particular, the often studied ground-state results are poorly reproduced by this first- 
order semiclassical quantisation. In order to improve on this approach one could 
determine higher-order terms in the semiclassical expansion. However, the simplicity 
in the torus quantisation of the Pad6 approximants is lost in this case and the divergence 
of the classical BGNF again becomes a problem. 

3.2. Quantisation via correspondence rules 

In quantum mechanics, the usual method used to obtain the operator corresponding 
to a classical Hamiltonian that contains products of the form q"pp is to supplement 
the general quantisation rule p + p  = -ihV and q + q with a linear correspondence 
rule. This additional rule, which symmetrises the operator so as to make it Hermitian, 
is required in order to maintain the basic postulates of quantum mechanics. When a, 
/3 = 1, the standard correspondence rules, e.g. symmetrisation, Weyl-McCoy and Born- 
Jordan (Mayes and Dowker 1972), yield the Hermitian operator +( qp + p q ) ,  which does 
have empirical support. However, when a, p 2 2, these rules yield different operators 
'corresponding' to a given classical Hamiltonian. In principle, there is a very large 
number of rules from which to choose (Cohen 1966), all of which yield Hermitian 
operators; in practice, a particular rule may be chosen on the basis of further critieria 
(Springborg 1983). However, while a given rule may be judged 'better' than another, 
it has been shown (Abraham and Marsden 1978) that none can yield the (unique) 
correct Hamiltonian operator when a, p 3 2 .  We verify this result by quantising our 
model system using the above standard rules, of which a modified Weyl-McCoy rule 
has previously been applied to a B G N F  (Robnik 1984, Robnik and Schrufer 1985). 

Unfortunately the correspondence rules, defined below, cannot be applied directly 
to the Pad6 approximants (or the asymptotic series) given in § 2 as these functions are 
not polynomials in Q and P. (Recall that torus quantisation can be applied directly 
to the Pad6 approximants.) Hence, the resolution of the classical divergence problem 
is of no benefit in this quantisation procedure. As a result, one must quantise the 
BGNF series and then, if possible, sum the resulting quantised series. Since the quantum 
RS series and its summation for the quartic anharmonic oscillator have been studied 
extensively (see, e.g., Bender and Wu 1969, 1976, Simon 1970, Graffi et al 1970), we 
d o  not sum the quantum series obtained via the different correspondence rules but 
rather compare these series with the RS series. That this comparison indicates whether 
a given correspondence rule yields the correct quantisation follows from the fact that 
there is a unique power series, in a given coupling constant, whose summation yields 
the correct eigenvalues. The ground-state RS series given by Bender and Wu (1969) 
has been summed to the correct eigenvalues by the Bore1 summation method (Graffi 
et a1 1970). 
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We begin by giving the different correspondence rules. 
( i )  Weyl-McCoy rule: 

or in standard order ( q  to the left of p ) ,  

(ii) Born-Jordan rule: 

(iii) symmetrisation rule: 

qmpp 3 f ( q a p P  + p % f ) .  

The quantisation of a BGNF series for a given correspondence rule is achieved by 
applying that rule to the series, term by term. The quantum perturbation series ( a  series 
in the coupling constant g, with each term being some function of ;he quantum number 
n )  is then obtained by acting on a state vector with the resulting series of operators. 
By identifying P and Q with the annihilation and creation operators of the harmonic 
oscillator basis, the application of this procedure to our B G N F  (equation ( 1 ) )  is 
straightforward. Below, we give the first few terms of the ground-state ( n  = 0) series 
for each of the above rules, as well as for the torus quantisation. The RS series was 
obtained from Bender and  Wu's coefficients by setting their A =fg. The coefficients 
in the series are given with common denominators for ease of comparison: 

84 2 3 5328 3 4 494 160 4 5 14667696  5 6 
RS: E 0 = ' , h + & g f i 2 - m g  + m g  ti 3 2 7 6 8 g  ti + 131072 g 

17 2 3 375 3 4 10689 4 5 87549 5 6 torus: Eo=+h+&gfi*-,g f i  + m g  3 2 7 6 8 8  f i  + 1 3 1 0 7 z g  fi  
E -1 102 2 3 9000 3 4 1282680 4 5 6 3 0 3 5 2 8 0  5 6 Weyl: O - 2 f i + & g h 2 - , g  fi + m g  fi  32768  g + m g  

204 2 3 28800  3 4 6840960 4 5 576322560  5 6 Born: Eo=ifi+i%gfi'-ijgg fi + m g  fi 32768  g fi + m g  fi 

symmetric: Eo=ifi+$gfi2-mg fi + m g  ti 32768  g fi + 131072 g fi . 
(Both forms of Weyl ordering, equations ( 5 )  and ( 6 ) ,  give the same quantum series 
above.) By comparing the different series obtained from the B G N F  with the RS series, 
we observe that the Weyl-McCoy series has the same coefficients to first order in the 
coupling constant, whereas the coefficients of the remaining series are the same only 
when there is no perturbation, i.e. g = 0. Thus, if one were to retain just the first two 
terms of the above series, the Weyl-McCoy series would be the only series that would 
coincide with the RS series. In this sense, the Weyl-McCoy rule has given the best 
quantisation, a result that supports the choice of this rule in previous works. However, 
we stress that, even if it proves possible to sum this series, the summation cannot yield 
the correct eigenvalues. Besides this problem, one is also faced with the difficulty of 
handling the large number of terms that result from applying a given correspondence 
rule term by term. It has been suggested (Robnik 1984) that this problem might be 
dealt with by making the further approximation of modifying the Weyl-McCoy rule 
by imposing the 'squaring axiom': if f ( q ,  p )  - . f (q ,  p ) ,  then f 2 ( q ,  p )  + f 2 ( q ,  p ) .  This 
further approximation, which reduces the Weyl-McCoy rule to torus quantisation in 

408 2 3 72000 3 4 2 0 5 2 2 8 8 0  4 5 2017 128960  5 6 
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the one-dimensional or multidimensional non-resonant cases, imposes a significant 
reduction in the accuracy of the ground-state eigenvalues in our example; the first-order 
coefficient in the torus series above is incorrect. In the case where the correct quantum 
results for a system are not known, the effect that the squaring axiom has on the 
accuracy of the approximate results cannot be determined. 

The physical reason that no correspondence rule yields the correct quantisation of 
a B G N F  is a result of the form of the Hamiltonian K .  Usually, one quantises the 
complere Hamiltonian expressed as H( q, p )  = p2/2m + V, where V may contain a term 
of the form qp, although it is generally just a function of q. However, in the B C N F  

approach the Hamiltonian is usually an infinite power series in the canonical variables 
qp and only a truncated part of this series is quantised term by term. That the 
quantisation of only part of the complete Hamiltonian via a correspondence rule must 
yield incorrect results is evident from the following considerations. 

Paper I1 (Ali 1985) reports a study of the general anharmonic oscillator H = 
f (  p2+x’+2bx’+gx4), where we have set w = 1 here. The first three terms in the B G N F  

series were found to be 

where K O  is the harmonic oscillator action. The quantum RS perturbation series (to 
third order) for this general anharmonic oscillator is 

E = ( n  + f ) h  + [&( n’+ n + f )  -?6’( n’+ n + % ) ] A 2 +  [-&’( 102n3+ 153n2+ 1 7 7 ~  +63) 

+&gb’( 1350n3+2025n’+ 1701n + 513) 

-$b4(4230n3 + 6345n2+4905n + 1395)]h3. i 10) 

It is clear that the term by term quantisation of the canonical variables in K;;  for cy 2 2 
yields different results for the quartic anharmonic oscillator ( b  = O )  and the cubic 
anharmonic oscillator ( g  = 0 ) .  For example 

b=O: K i + ( n ’ + n + i ) f i ’  

g = 0: K i + ( n + n + li) h ’, 
This result is usually explained by means of the Feynman diagram technique. For a 
given perturbed system, the mth term in the RS series may be determined by summing 
all connected Feynman diagrams of the corresponding field theory that have no external 
legs (see, e.g., Fetter and Walecka 1971). Bender and Wu (1969) have demonstrated 
this for the quartic anharmonic oscillator (b4 theory). Thus, one expects the different 
quantisations of K i  above since the Feynman diagrams are different for the 43 and 
44 theories. The Feynman diagram technique allows one to correctly determine the 
coefficients in a perturbation series because i t  takes into account the physical symmetries 
associated with a given system, i.e. with the complere Hamiltonian. 

The correspondence rules d o  not take into account the physical properties of the 
system; rather, they associate a mathematical symmetry number to each power of Kc,. 
As a result, no correspondence rule can quantise the B C N F  of the general anharmonic 
oscillator ( b  $ 0 ,  g Z 0  in equation (9 ) )  term by term so as to yield the RS series, 
equation (10). In  our earlier work (11 )  we showed that for n = O  and small values of 
6 and g, the RS series (equation (10)) reproduced the correct energies. We also found 
that, for these values of b and g, the B G N F  series (equation ( 9 ) )  did not diverge. Thus, 
the failure to obtain the correct quantum results from a convergent B G N F  series is due 
to the quantisation problem. 
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3.3. Path integral quantisation 

The path integral approach to quantisation, which includes a wide range of topics, is 
a very active field today. As we are interested in the quantisation of a BGNF, we are 
constrained to consider the path integral in phase space. In particular, we consider 
how the operator ordering problem discussed in 9 3.2 appears in this formalism. It is 
generally accepted (see, e.g., Faddeev and Slavnov 1980, Schulman 1981) that the 
ordering problem is inherent in the phase space path integral and that it becomes 
evident when one defines the integration procedure in a concrete manner. When the 
path integral is defined in terms of a measure, as Feynman's original definition was 
(Feynman 1951), a limiting procedure must be chosen in order to evaluate the integral, 
e.g. the midpoint rule may be used, where one evaluates the Hamiltonian at the midpoint 
of each discrete interval. Cohen (1970) and Testa (1971) have shown that different 
definitions of the limiting procedure correspond to different ordering rules, e.g. the 
midpoint rule corresponds to the Weyl-McCoy rule. When the path integral is defined 
in terms of a prodistribution (DeWitt-Morette et a1 1979), one obtains integrands that 
contain products of coordinates and momenta at the same time. Here again, these 
integrals are not defined until a (time) ordering has been specified (Mizrahi 1981). 
Hence, the phase space path integral in either form does not resolve the ordering 
problem, and as a result of this, coupled with the technical difficulties involved with 
this formalism. we d o  not consider it further. 

4. Conclusions and discussion 

We have discussed two limitations that are present in the B G N F  approach. The first 
results when the B G N F  series is divergent, and may, at least when the system is integrable, 
be resolved by properly summing the series. The second arises when one tries to 
quantise the B G N F  series or its summation, and is not resolvable. That is to say, given 
a B G N F  series, there is no known method by which the correct energy spectrum may 
be obtained. Our recent work (paper 11) on  the quantum normal form ( Q N F )  shows 
what one would expect the proper quantisation of the B G N F  to yield. The QNF, which 
maintains the spirit of the BGNF, yields the BGNF series when the quantum operators 
are replaced by the corresponding classical variables. Also, the Q N F  series have, for 
the systems considered, yielded the same results as the RS series. Thus, although we 
know the correct quantum description of a system described in the B G N F  approach, 
we d o  not know how to obtain that quantum description from the classical B G N F  itself. 
As long as the quantisation problem is unresolved, the validity of the B G N F  approach 
will be severely limited, irrespective of whether the B G N F  series converges, diverges, 
or is summed. 
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